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Datasets and R scripts can be downloaded in a ZIP archive from the Absalon page (Applied
Statistics) or from

https://www.arlundborg.com/assets/SmS/data/day6.zip

Exercise 6.1 Causal inference using an instrumental variable

The purpose of this exercise is to try the two-step procedure using an instrumental vari-
able. In order to know the true value of the parameters we simulate a dataset from the
following model:
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Here the regression coefficients are written above the arrows. Furthermore, normal errors
with unit standard deviation are added to all variables. Simulating N = 100 samples
from this model may be done via the R code:

N <- 100

C <- rnorm(N)

Z <- rnorm(N)

X <- 0.5 * Z + 0.5 * C + rnorm(N)

Y <- 2 * X + C + rnorm(N)

We wish to recover the causal effect of X on Y (i.e. the coefficient 2) from the dataset,
where only Z, X and Y are available. Thus, the confounder C is not available, but we
have the instrumental variable Z at our disposal. Answer the following questions:

• Simulate the dataset in R using the above code.

• Create a simple linear regression of Y on X. Do you recover the coefficient 2 from
this regression? Why not? Why is the estimate biased to return too large a value?

• Implement the two-step procedure described on lecture slide 17 (Day 6). Hint: To
find the predicted values for X given the instrumental variable Z you may use the
code
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hatX <- predict(lm(X ~ Z))

• Do you recover the coefficient 2 from the two-step procedure? Is this still true if you
simulate a new dataset several times?

• Try to see if you can recover the coefficient 2 when the sample size equals N = 10000.
What does this say about the power of the two-step procedure?

• Now assume that the confounder C is available. Can you recover the true causal
effect of X on Y from N = 100 observations?

Exercise 6.2 Latin square

The effect of insulin on the blood concentration of glucose was studied on rabbits. Three
rabbits received insulin doses A, B and C (corresponding to respectively 0, 1 and 2 units)
on different days. The experiment is given below (dataset available in file rabbit.txt)
with the glucose measurements (mg pr. 100 ml blood) taken 50 minutes after injection.

Rabbit
Day 1 2 3

1 A 50 C 39 B 36
2 C 37 B 51 A 53
3 B 51 A 60 C 37

Make the Table of Variables, set up the associated statistical model, and analyze the
data. Remember to obtain estimates of effects of interest.

Why is it not possible to investigate whether there is an interaction between rabbit and
dose based on these data?

(Data are from Young & Romans (1948): Assay of insulin with one blood sample per
rabbit per day. Biometrics, 4, 122–131.)

Exercise 6.3 Cover crops for apples

In East Malling the total harvest of apples (in pounds) in a four-year experimental period
was investigated in a randomized block design with six treatments (cover crops A, . . . ,
F) and four blocks. The design was implemented with 6 plots per block randomized over
treatments. Beside the total harvest y in the experimental period, the total harvest x in
a 4 years period prior to treatment was also recorded. The data are as follows (dataset
available in file apples.txt):

Block
1 2 3 4

Cover crop x y x y x y x y
A 8.2 287 9.4 290 7.7 254 8.5 307
B 8.2 271 6.0 209 9.1 243 10.1 348
C 8.2 234 7.0 210 9.7 286 9.9 371
D 5.7 189 5.5 205 10.2 312 10.3 375
E 6.1 210 7.0 276 8.7 279 8.1 344
F 7.6 222 10.1 301 9.0 238 10.5 257
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Analyze the data! Is there a significant effect of cover crop on the total harvest? Does
the total harvest in the experimental period depend on the total harvest in the preceding
period?

Assume that the previous harvest x was not measured. Is it then possible to find signifi-
cant differences between the effect of cover crop?

Remark: The variables y and x appear to be recorded on different scales, i.e. the values
of y approximately 30 times as big as the values of x. You can ignore this difference in
scale, and simply use x as a covariate in the analysis of y.

Exercise 6.4 Constructing a latin square design

The objective of this exercise is to use the AlgDesign-package in R to generate the latin
square design from Exercise 6.2. The full factorial design with 33 = 27 observations may
be generated by the following code:

library(AlgDesign)

full.factorial <- gen.factorial(levels=3, nVars=3,

varNames=c("Rabbit", "Day", "Dose"))

full.factorial

In this design the levels of the 3 variables are the numbers −1, 0, 1. To make it easier
for us to look at the variables we may recode the levels, which may be done using the
following code:

full.factorial <- with(full.factorial,data.frame(

Rabbit=factor(c("Rabbit 1", "Rabbit 2", "Rabbit 3")[2+Rabbit]),

Day=factor(c("Day 1", "Day 2", "Day 3")[2+Day]),

Dose=factor(c("Dose A", "Dose B", "Dose C")[2+Dose])))

Have a look at the full factorial design with the recoded variable levels. Now use the
optFederov() function to make a design with 9 observations where you have interest on
the main effects of the 3 variables. Do you find the design from Exercise 6.2?

Remarks:

1. The optFederov() looks for a D-optimal design. And in this particular situa-
tion the latin square design is the D-optimal design, so you would expect that
optFederov() will find the latin square. However, optFederov() does a random
search, so you may be unlucky that is does not find the true optimum. To improve
on this you may increase the nRepeats-option, e.g. using nRepeats=1000.

2. You may need to rename the levels of Dose and Rabbit to have an exact match
with the table in Exercise 6.2. Using different names for the levels does, of course,
not change the basic properties of the design.
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Exercise 6.5 Non-linear regression

The following experiment was carried out in a greenhouse: 15 pots were sown with barley
seeds: 3, 7, 15, 34, 77 barley seeds per pot, respectively, with three pots for each number
of barley seeds. After harvest, the total fresh weight yields (in grams) were measured for
each pot. The results are listed in the table below:

No. of seeds Yield
3 7.5 9.8 9.0
7 18.8 27.7 27.1
15 64.7 30.2 37.0
34 84.3 110.0 71.2
77 125.8 85.7 91.9

We want to use the following non-linear model for the relationship between number of
barley seeds, x = seeds, and the logarithmic yield, y = log(yield):

y ≈ a− b · e−cx (1)

Please answer the following questions:

1. Plot the logarithmic yield (variable y) against seeds.

2. What is the interpretation of the parameters a and b? Make a qualified guess on
the values for a and b.

Hint: What happens for x = 0 and x very large?

3. Although more difficult it is also possible to make a qualified guess on the c param-
eter, namely:

c ≈ log(2)

15
≈ 0.045

You are welcome to explain the reasoning behind this guess (if you can), but oth-
erwise you may simply take it for granted.

4. Assuming that that data frame with the observations is called barley, the following
R code makes an interactive plot in RStudio (remember to install the manipulate-
package if you have not done it before):

library(manipulate)

manipulate(

{plot(log(yield) ~ seeds, data=barley)

x <- 0:80

y <- a - b * exp(-c * x)

lines(x, y)},

a=slider(2, 8, initial=5, step=0.1),

b=slider(0, 4, initial=2, step=0.1),

c=slider(0, 0.1, initial=0.045, step=0.005)

)
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Try this and click on the gear sprocket (in danish: tandhjul) icon in the graphical
window to manipulate the a, b and c parameters interactively. See if you can change
the parameters such that the data points are fitted closely by the non-linear curve.

Remark: In this way the manipulate() function may be used to derive initial
guesses for the parameters in a non-linear regression. However, if you already have
an adequate guess, then this is not necessary.

5. Use nls() with the initial guesses given in the start-option to fit the parameters
a, b and c by a non-linear regression.

6. Give estimates and confidence intervals for the parameters a, b and c.

7. Is the non-linear model valid?

Hint: You may create a residual plot and normal quantile plot by “hand” using the
code on slide 9 (Day 6).

8. For some of the “classical” and often used non-linear functions there exist so-called
self-starting functions in R. The non-linear function used in this exercise is one of
these functions. The associated R function is called SSasymp(). Try the following
R code and relate it to the results you found above:

m2 <- nls(log(yield) ~ SSasymp(seeds, a, a.minus.b, log.c), data=barley)

cbind(estimate=coef(m2), confint(m2))

Remark: SSasymp() uses a different parametrization than the one used in Eq. (1).
Can you describe how you pass between these parametrizations?

(Reference: Based on exercise 8.6 from Anders Tolver & Helle Sørensen: Lecture notes
for Applied Statistics.)

5


	Causal inference using an instrumental variable
	Latin square
	Cover crops for apples
	Constructing a latin square design
	Non-linear regression

